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Abstract

Projection of a polyhedron involves the use of a cone whose extreme rays induce the inequal-

ities defining the projection. These inequalities need not be facet defining.

We introduce a transformation that produces a cone whose extreme rays induce facets of

the projection.
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Given a polyhedron

Q := {(u,x) E 1ZP x 1q : Au + Bx < d},

where A, B and d have m rows, the projection of Q onto the subspace of the x-variables is

P,(Q) := {x E 1Zq : 3u E 1?P with (u,x) E Q}.

We are discussing the projection of a polyhedron, but the projection of a more general

set can often be reduced to that of a polyhedron: for instance, if instead of Q we consider

the nonpolyhedral set

S:= {(u,x) E ZP X q :Au+Bx<_d, xEX}

where X is arbitrary, then

P.(S) = P.(Q) n X.

It is well known (see, for instance, [2], Section IV, or [5], Chapter 1.4.4) that

P,(Q) = {x E IZ : (vB)x < vd for all v E extr W}

where extr W denotes the set of extreme rays of the projection cone

W:= {v ER : vA = 0, v > 0}.

It is also well known that although the inequalities defining P'(Q) are in 1-1 correspon-

dence with the extreme rays of W, they do not necessarily define facets of P'(Q), i.e. the

system defining P3.(Q) is not necessarily minimal. As pointed out by M. Goemans in his

recent talk at IPCO II [4], in practice often large numbers of redundant inequalities are

generated, even though only extreme rays of W are used. It would be nice to be able to

tell which extreme rays of W induce facets of P•(Q), but that question has no answer in

temins of the properties of W only: whether the inequality (vB)x < vd defines a facet of

P,(Q) depends on B and d as well as on v itself. Instead of trying to answer that question,

therefore, we address a related problem: is there an alternative representation of Q, whose

projection cone (or its projection on a subspace) has the property that all of its extreme rays

induce facets of the projection? In the sequel we give such a representation. Its key feature,

which brings about the desired property, is that in this representation the coefficient matrix



of x is the identity matrix plus possibly some zero rows, while the right hand side is the unit

vector with 1 in the last position.

Let rank(B) = r, and w.l.o.g. assume that the first r rows and columns of B are linearly

independent. (Recall that B is rn x q). Perform the following sequence of operations on the

system defining Q:

1. If r = m, let B1 := B and go to 2. Otherwise add to B n, - r new columns

bq+l,..., q+m+-f •Zr, where forj = 1,...,r- r, b-+j := er+j, and where et is the

unit vector in iZm with 1 in position f. Call the resulting matrix B1 and go to 2.

2. If r = q, i.e. if B1 is m x m with rank(B I ) = m, let B0 := B 1, A0 := A, d0 = d,

and go to 3. Otherwise add to B1 q - 7- new rows bm+i,..., bbm+q-r E lrZn+q-r where

for i = 1, ... , q - r, bm+i = e,+i, and where eT is the transpose of the unit vector in
Im+q-r with 1 in position r + i. Call the resulting matrix B0.Add q - r zero rows to

A and call the resulting matrix A0. Finally, add to d q - r components equal to M

(a number sufficiently large for the resulting inequality to be redundant), and call the

resulting vector do. Then go to 3.

3. Let B0 be n x n. By construction, B0 is nonsingular. Consider now the polyhedron

Aou + Is + Box' = do, s > 0
Q { (u,sX') e'1ZP ,Px7z" x'Z"=I

X q+j=0fo

Bo1 Aou + Bjos + x' =Bo'do, s > 0
= (,sx') E T1P x x1Z

q+j = =0for j=1,.,n-q

and rewrite Q' as

Bo'Aou + Bj's - Bo'douo + x' = 0, s > 0
Q (u, s, uo, x') E 1Z• x1Z• x•x1ZT 1Zuo= 1 0

S0' =forj=I,-.,n-q

4. Let B'- B ,q) where B-q1 and Bo1-q are the submatrices containing the first
on--q)2



q and the last n - q rows of Bo', respectively, and let
B-1 Aou + B- 1,; - Boq1douo + X = 0

B-1 qAou + B0,71 q; - Bonqq
Q0:= (u,s, uo, x) E Rp xIVX7"Zx1q On-qx TB douo = 0

Uo = 1

> 0

5. To project Q0 onto the x-space, define the projection cone

vB-1'Ao + wBo,,,qAo = 0

W0 uw'-T v(-Bf)Ao + w( ,B,-q)Ao + vo = 0
vB I + wBoq > 0

Note that, since B6 1 is nonsingular, W° is pointed. The projection of Q0 is then

p )vx <v0 for all (v, v°) E x 1Z such that T
. Q(v,w, vo) E extr W0 for some w E TZ,-q

where extr W0 denotes the set of extreme rays of W0 .

It is easy to see that P,(QO) P,(Q), since there is a 1-1 correspondence between the

points of Q and those of Q0 .

Consider now the polyhedral cone polar to P.(QO), namely

P;(QO) = {(V,Vo) E TZq x 1ZIvx < vo for all x E px(QO)

By construction,

P*(QO) = {(v, vo) E nq x Z: (v,w, vo) E WO for some w E Z,,q},

-- p(V..o)(W°),

i.e. the polar cone of the projection of Q0 on the x-space is the projection of W0 on the

(v, vo)-space.

But then from basic properties of polarity, we have the following.

Theorem 1 Let P.(Q) be full dimensional. Then the inequality vx < vo defines a facet of

P,(Q) if and only if (v, vo) is an extreme ray of the cone P(,,,,,)(W°).
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Proof. If P (Q) is full dimensional, so is P,(Q0 ); and from basic properties of polarity.

there is a 1-1 correspondence between facets of the polyhedron P•(QO) and extreme rays of

its polar cone P*(Q 0 ). But P*(QO) = P(,10)(WO).- 0

Note that if (f, Do) is an extreme ray of P(,,.0)(W°), then there exists TiV E IZ''-q such that

(f, tL', Vo) is an extreme ray of W0 . The converse, however, is not always true.

On the other hand, in the important special case when the matrix B is of full row rank,

i.e. when r =- m and n = q, we have

Corollary 2 Let P,(Q) be full dimensional, and rank(B) = m. Then the inequality vx < Vo

defines a facet of Px (Q) if and only if (v, vo) is an extreme ray of the cone W'.

A few comments are in order.

First, note that the definition of Q does not contain explicitly constraints of the form

u > 0; if they are present, they are part of the system Au + Bx < d, i.e. A and B are of the

form A = ( ' and B = 1 , respectively, where I is the p x p identity matrix and

0 is the p x q zero matrix.

Second, while the above described transformation produces a projection cone with a very

desirable property, there is a price to pay for this: if the matrix A has a structure that makes

it easy to generate the extreme rays of W, that structure gets lost in the transformation,

and the extreme rays of W0 , or P(,,o)(W 0), may be much harder to generate.

Third, in many important cases the matrix B is of the form B = ( , which voids the

need for the above transformation and produces directly a projection cone W {(v, w, vo)

(v, w)A = 0, (v, w) >_ 0} such that the extreme rays of P(,,•o)(W), the projection of W onto

the (v, vo)-space, yield facets of P.,(Q). This is the case encountered, for instance, in the

characterization of the perfectly matchable subgraph polytope of a graph in [3]; as well as in

the recent lift-and-project cutting plane procedure of [1]. In these cases, it is important to

know how to use the cone W to generate extreme rays of P(,,,,)(W) (see [1] and its references

for a discussion of this issue, which was investigated in the 70's).
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